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We examine a model system to study the effect of pressure on the surface tension of a vapor-liquid
interface. The system is a two-component mixture of spheres interacting with the square-well (A-A) and
hard-sphere (B-B) potentials and with unlike (A-B) interactions ranging (for different cases) from hard
sphere to strongly attractive square well. The bulk-phase and interfacial properties are measured by
molecular dynamics simulation for coexisting vapor-liquid phases for various mixture compositions,
pressures, and temperatures. The variation of the surface tension with pressure compares well to values
given by surface-excess formulas derived from thermodynamic considerations. We find that surface tension
increases with pressure only for the case of an inert solute (hard-sphere A-B interactions) and that the
presence of A-B attractions strongly promotes a decrease of surface tension with pressure. An examination
of density and composition profiles is made to explain these effects in terms of surface-adsorption arguments.

I. Introduction
The effect of pressure, p, on interfacial tension, γ, is an

issue of longstanding interest.1-7 The behavior is captured
by the derivative

where a change that occurs along the saturation curve
(subscript σ) at constant temperature, T, and interfacial
area, A, is indicated. From the phase rule, there is only
one degree of freedom for two coexisting phases of a pure
substance and thus one cannot vary saturation pressure
at a fixed temperature; for a pure substance, τ is not
defined. To proceed, it is necessary to consider a two-
component system, for which the phase rule permits
isothermal variation of the pressure while maintaining
the presence of two phases. However, in this case, one
still does not get a description of the purely mechanical
effects that pressure has on surface tension. It is not
possible to effect the change in pressure without also
changing the species composition of the coexisting phases,
which in turn can modify the composition and structure
of the interfacial region. Thus, the effect of pressure on
surface tension, when measured this way, is necessarily
a result of the combined mechanical (pressure) and
chemical (composition) effects. In the best case, an “inert”
gas (insoluble in the liquid) is added to pressurize the
system, which then produces changes in the vapor-phase
composition only.

A Maxwell relation provides some insight that can be
used to predict and understand the effect of pressure for
a two-component system containing N1 and N2 molecules

of species 1 and 2, respectively:

The right-hand side describes the change in total volume
that results from a change in the amount of interfacial
area between the phases, keeping the overall mole
numbers fixed. Rice5 has discussed the effects giving rise
to the change of volume. On one hand, movement of
material from the bulk liquid to form the new surface
(where the density is less) will result in an increase in the
volume and tend to make the derivative positive. On the
otherhand, if vapor-phasemoleculesadsorb tosomedegree
on the surface, then as new surface forms, it adsorbs more
material from the vapor, causing the volume there to
decrease and thus tend to make the derivative negative.
In practice, both positive and negative values of τ have
been observed in experiments involving the pressurization
of a vapor-liquid interface using an inert gas, although
negative values are much more prevalent.7

Hansen8 presented a general formulation of interfacial
thermodynamics, developed such that the pressure re-
mains a relevant independent variable, while making both
species chemical potentials into dependent variables.
Turkevich and Mann6 also showed how Hansen’s con-
struction could be used to determined τ strictly in terms
of the volume and moles of the two-phase system and the
densities of the bulk phases. Considering henceforth a
mixture of two species only, a Gibbs-Duhem equation
can be written for the composite liquid + vapor + interface
system

where S, V, and Ni are the total entropy, volume, and
number of moles of species i in the two-phase system,
respectively, and µi is the chemical potential of component
i. To maintain equilibrium between the phases, an
isothermal change in pressure must be accompanied by
changes in the chemical potentials that permit them to

(1) Gibbs, J. W. Collected Works (Yale University Press: New Haven,
1906); Dover: New York, 1961; Vol. 1, p 236.

(2) Lewis, G. N.; Randall, M. Thermodynamics and the Free Energy
of chemical substances; McGraw-Hill: New York, 1923; Chapter 21.

(3) Bridgman, P. W. The Physics of High Pressure; Beel: London,
1952.

(4) Defay, R.; Prigogine, I.; Bellemans, A.; Everett, D. H. Surface
Tension and Adsorption; Wiley: New York, 1966; p 89.

(5) Rice, O. K. J. Chem. Phys. 1947, 15, 333.
(6) Turkevich, L. A.; Mann, J. A. Langmuir 1990, 6, 445.
(7) Turkevich, L. A.; Mann, J. A. Langmuir 1990, 6, 457. (8) Hansen, R. S. J. Phys. Chem. 1962, 66, 410.

τ ≡ (∂γ
∂p)σ,T,A

(1)

(∂γ
∂p)T,A,N1,N2

) (∂V
∂A)T,p,N1,N2

(2)

-S dT + V dp - N1 dµ1 - N2 dµ2 - A dγ ) 0 (3)
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remain equal between the phases. These changes can be
described by Gibbs-Duhem equations written separately
for the two phases

with the phases indicated by the superscript (R or â).
Alternatively,

where ni is the molar density of species i in the bulk phase
and s is the entropy density. By subtracting each of the
equations given in eq 5 from eq 3 and dividing by the area,
we obtain a Gibbs-Duhem equation that amplifies the
effects of the interface

where ŝ is the surface-excess entropy. The surface excess
of species i is defined as

At the level of detail where the interface is significant,
the volumes VR and Vâ are ambiguous. Typically, they are
defined to make two of the terms in eq 6 vanish. The most
common definition is that due to Gibbs, for which Γ1 ) 0
and V - VR - Vâ ) 0. This definition has the advantage
of conserving the total volume and permits the identifica-
tion of a single plane that separates the two phases. In
the present context, however, this definition is not helpful,
as it obscures the influence of pressure on the other
quantities. Instead, it is more useful to define the two
molar excess properties to be zero: Γ1 ) 0 and Γ2 ) 0.
With the volumes VR and Vâ defined this way, the
derivative, τ, defined in eq 1 is precisely (V - VR - Vâ)/A.
More specifically,6

Here, the partition coefficients are defined as κ1 ) n1
â/n1

R

and κ2 ) n2
R/n2

â. This approach makes no reference to a
dividing plane, but Turkevich and Mann have described
how it can be connected to the Motomura two-plane
approach.9

Equation 8 is subtle. It appears to describe a surface
property in terms of purely bulk-phase properties, but
this is not the case. Were we to ignore the interfacial effects
and treat the phases as homogeneous with densities given
everywhere by their bulk values, even very near the
interface, we could write N1 ) V(n1

R
φ + n1

â(1 - φ)) and N2

) V(n2
R
φ + n2

â(1 - φ)), where φ is the fraction of the total
volume occupied by phase R. Substitution of these expres-
sions in eq 8 yields, incorrectly, τ ) 0. When applied
without this approximation, eq 8 yields a nonzero value
of τ that includes elements that describe how the overall

composition differs from a simple average of the bulk
compositions.

While eq 8 has the benefit of being a rigorous expression
for the pressure derivative of the surface tension, its
connection to the equally rigorous eq 2 is not clear. The
arguments given in connection to eq 2 relate to the excess
solute at the surface, and this quantity is more naturally
captured by the Gibbs definition of Γ2 of eq 7. One can
proceed less easily but still rigorously from this standpoint
too. Using the Gibbs convention for VR and Vâ, we write

The derivative here can be given in terms of the bulk-
phase properties using an analysis similar to that leading
to the Clapeyron equation.10 The result is

where the approximate equality is based on the assump-
tions that the amount of solute in the liquid is negligible
(n2

R ≈ 0) and that the liquid-phase density of solvent is
greater than its vapor-phase density (n1

R . n1
â); the

indication is that the derivative is positive. Combination
of eqs 9 and 10 indicates that the slope, τ, is of opposite
sign to the surface excess of species 2. Thus, adsorption
of solute on the surface (indicated by positive Γ2) from the
vapor promotes the decrease of surface tension with
pressure, as argued in the context of eq 2.

Molecular simulations have been applied to understand
surface behavior in a variety of contexts.11,12 Such studies
can be useful in probing molecular-level aspects of surface
phenomena. Modeling studies are also of interest for their
ability to examine systematically how qualitative features
of molecular interactions influence surface properties. As
it involves the effect of solutes on surface behavior,
adsorption of a volatile component can significantly reduce
the surface tension, as shown by Lee et al.13 Interesting
behavior was also noticed by Lee et al. for a low ratio of
solute/solvent diameter. As the adsorption is very little at
the interface, under such conditions, surface tension
increases with an increase in the composition of solute.
Several others14-17 also studied the vapor-liquid interface
of binary mixtures. However, the issue of the effect of
pressure on surface tension has not been explored previ-
ously with these techniques.

In this work, we study the effect of pressure on surface
tension for some model binary systems. In particular, we
examine the vapor-liquid interfacial properties for the

(9) Motomura, K.; Aratano, M. Langmuir 1987, 3, 304.

(10) Denbigh, K. Principles of Chemical Equilibrium, 4th ed.;
Cambridge University Press: Cambridge, U.K., 1971.

(11) Rowlinson, J. S.; Widom, B. Molecular Theory of Capillarity;
Oxford University Press: Oxford, U.K., 1982.

(12) Croxton, C. A. Statistical Mechanics of the Liquid Surface;
Wiley: New York, 1980.

(13) Lee, D. J.; daGamma, M. M. T.; Gubbins, K. E. J. Phys. Chem.
1985, 89, 1514.

(14) Lee, D. J.; daGamma, M. M. T.; Gubbins, K. E. Mol. Phys. 1984,
53, 1113.

(15) Salomons, E.; Mareschal, M. J. Phys.: Condens. Matter 1991,
3, 3645.

(16) Salomons, E.; Mareschal, M. J. Phys.: Condens. Matter 1991,
3, 9215.

(17) Mecke, M.; Winkelmann, J.; Fischer, J. J. Chem. Phys. 1999,
110, 1188.

-SR dT + VR dp - N1
R dµ1 - N2

R dµ2 ) 0

-Sâ dT + Vâ dp - N1
â dµ1 - N2

â dµ2 ) 0 (4)

VR(-sR dT + dp - n1
R dµ1 - n2

R dµ2) ) 0

Vâ(-sâ dT + dp - n1
â dµ1 - n2

â dµ2) ) 0 (5)

-ŝ dT + 1
A

(V - VR - Vâ) dp -

Γ1 dµ1 - Γ2 dµ2 - dγ ) 0 (6)

Γi ) (Ni - ni
RVR - ni

âVâ)/A (7)

τA ) V - [(1 - κ2)N1/n1
R + (1 - κ1)N2/n2

â]/(1 - κ1κ2)
(8)

τ ) -Γ2(∂µ2

∂p )
σ,T

(9)

(∂µ2

∂p )
T,σ

)
n1

â - n1
R

n1
ân2

R - n1
Rn2

â

≈ 1
n2

â
(10)
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square-well (SW) model, in the presence of solutes of
varying degree of attraction for the SW solvent. We
demonstrate the effects discussed above, namely, that the
surface tension increases with pressure for a truly inert
solute but that even a modest degree of attraction can
cause τ to become negative. We also use the detailed
information provided by simulation to test eq 8 for τ, which
is not as easily implemented using experimental data.
The rest of this paper is organized as follows. In the next
section, we give details about the models and simulations
performed in this study. Then, in section 3, we present
and discuss the results. We conclude in section 4.

II. Model and Methods
The model chosen in this study is a liquid-vapor system

of square-well (SW) particles. The SW potential is arguably
the simplest model that incorporates both repulsive and
attractive forces between molecules. It is defined by the
pair energy, u(r):

where λσ is the potential-well diameter, ε is the depth of
the well, and σ is the diameter of the hard core. Because
of its simplicity and analytic tractability, the SW potential
has been applied as a model of simple atomic systems,18-20

colloidal particles,21-24 heterochain molecules,25,26 and
complex systems,27-29 among others.

In the present study, all systems employed N ) 1000
particles of which the xsw fraction of the molecules were
square-well solvent species (A) and the rest were solute
particles (B). All hard-core diameters were set equal, that
is, σAA ) σAB ) σBB ≡ σ. The solute particles interacted
only as hard spheres (εBB ) 0, no attraction), and the
solvent SW parameters were the same for all systems
studied here. A range of values for the solute-solvent
interaction was examined, from purely repulsive with no
attraction (εAB ) 0) to highly attractive (εAB ) 2.0). In this
and all that follows, properties are given in units such
that σ and εAA are unity.

A common method to calculate surface tension by
molecular simulation is by placing a slab of fluid in a
rectangular simulation cell with periodic boundaries, such
that the fluid spans the short (x, y) dimensions of the
simulation volume.30 The z-axis is extended to produce
the vapor phase, and the system is allowed to equilibrate
to create a vapor space before taking the averages of the
properties of interest. We adopted this approach for the
present study. The thermodynamic definition of the

surface tension, γ, expresses it in terms of the change in
free energy, F, as the interfacial area, A, of two coexisting
phases is changed at constant volume, V,

From this definition, we can show that the surface tension
can be expressed in terms of components of the pressure
tensor for the slab based geometry

where pRR is the RR component of the pressure tensor. The
factor of 1/2 multiplying the average accounts for the
presence of two interfaces in the system. Lz is the extended
length of the box.

Pressure-tensor components can be obtained from the
virial.30 For pairwise-additive potentials, the expression
is

where N is the total number of molecules, F is the number
density, k is the Boltzmann constant, T is the temperature,
rij is the vector between the center of mass of molecules
i and j, and fij ) -∇uij is the force between them; the angle
brackets indicate an ensemble or time average. For hard
potentials such as those used in this study, the forces are
impulsive, having infinite magnitude but acting for an
infinitesimal time. When integrated over time, each
collision contributes a well-defined amount to the average
in eq 14

where tsim is the total simulation time and the sum is over
all collisions occurring in this time; ∆pij is the impulse
associated with the collision between atoms i and j. The
simulation proceeds in the usual manner for impulsive
potentials:30 solve for the time when the next pair collides
(which occurs when any two particles reach a separation
equal to the hard-core or square-well diameters), advance
eachparticle to that timevia free-flightkinematics,process
the dynamics of the colliding pair, and move on to the
next collision to repeat the process. With each collision,
a contribution to the pressure-tensor averages is made in
accordance with eq 15.

Our molecular dynamics (MD) simulations were per-
formed in a canonical (NVT) ensemble, that is, at a
prescribed total particle number (liquid + vapor +
interface), total volume, and temperature. The simulation
was started from a face-centered-cubic lattice configura-
tion in a cubic periodic box. The initial overall density
was fixed at Fσ3 ) 0.84, from which we created a vacuum
by expanding the box in one dimension, such that the
final dimension of the box had Lx ) Ly ) 10σ and Lz ) 4
× Lx. The temperature was kept constant by simple
momentum scaling. The simulations were equilibrated
for 1.3 million time steps, and averages were taken for
around 400 000 time steps (where the time step is ∆t )
0.02σAAxm/εAA, with m being the particle mass; this step
is given only as a convenient measure of the length of the
simulation, and it has no effect on the dynamics. Typically,
multiple collisions will occur in a single ∆t).

(18) Del Rio, F.; Delonngi, D. A. Mol. Phys. 1985, 56, 691.
(19) Vega, L.; de Miguel, E.; Rull, L. F.; Jackson, G.; McLure, I. A.

J. Chem. Phys. 1992, 96, 2296.
(20) Chang, J.; Sandlar, S. I. Mol. Phys. 1994, 81, 745.
(21) Bolhuis, P.; Frenkel, D. Phys. Rev. Lett. 1994, 72, 2211.
(22) Asherie, N.; Lomakin, A.; Benedek, G. B. Phys. Rev. Lett. 1996,

77, 4832.
(23) Noro, M. G.; Frenkel, D. J. Chem. Phys. 2000, 113, 2941.
(24) Zaccarelli, E.; Foffi, G.; Dawson, K. A.; Sciortino, F.; Tartaglia,

P. Phys. Rev. E 2001, 63, 031501.
(25) Cui, J.; Elliot, J. R. J. Chem. Phys. 2001, 114, 7283.
(26) McCabe, C.; Gil-Villegas, A.; Jackson, G.; Del Rio, F. Mol. Phys.

1999, 97, 551.
(27) Lomakin, A.; Asherie, N.; Benedek, G. B. J. Chem. Phys. 1996,

104, 1646.
(28) Zhou, Y.; Karplus, M.; Ball, K. D.; Berry, R. S. J. Chem. Phys.

2002, 116, 2323.
(29) Zhou, Y.; Karplus, M.; Wichert, J. M.; Hall, C. K. J. Chem. Phys.

1997, 107, 10691.
(30) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids;

Oxford University Press: Oxford, U.K., 1987.

u(r) ) {∞, 0 < r < σ
-ε, σ er < λσ
0, λσ er

(11)

γ ) (∂F
∂A)T,V,N

(12)

γ )
Lz

2 〈pzz - 1
2

(pxx + pyy)〉 (13)

pRâ ) FkT +
1

V
〈∑

i)1

N-1

∑
j>i

N

(rij)R(fij)â〉 (14)

pRâ ) FkT +
1

Vtsim
∑

collisions

(rij)R(∆pij)â (15)
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The phase coexistence point was adjusted by varying
the overall composition of the system. A fixed number of
solvent atoms (ranging from 700 to 1000) and solute atoms
(from 300 to 0) were introduced, and the vapor and liquid
densities and compositions were permitted to adopt their
equilibrium values. The resulting pressure was measured
by averaging the virial.

III. Results and Discussion

We consider first a system in which the solute has no
attraction to the solvent, so that solute-solute and solute-
solvent interactions are pure hard sphere. This system is
a true example of the inert gas that is sometimes
approximated experimentally when focusing on the effect
of pressure on surface tension. We examined the behavior
for four temperaturessT (in units of εAA/k) ) 1.0, 1.05,
1.1, and 1.15sand with solvent-solvent square-well
parameters λ ) 1.5 and 2.0 (in separate studies); we
present detailed results for the λ ) 1.5 case only, as the
results for λ ) 2.0 are qualitatively similar. Figure 1
presents a portion of a pressure-composition (p-xy)
coexistence diagram as determined using the vapor +
liquid simulations described above. The amount of hard-
sphere solute in the liquid phase is negligibly small.

The surface tension for the hard-sphere solute system
is presented as a function of pressure and temperature in
Figure 2, along with data for the pure square-well system
taken from previous work.31 The temperature dependence
is as expected, with the surface tension decreasing

smoothly with increasing temperature. As for the pressure
dependence, this system exhibits the uncommon behavior
in which surface tension increases with pressure. This
outcome could be anticipated on the basis of the arguments
reviewed above, relating the pressure dependence to the
volume change accompanying the creation of interfacial
area (eq 2). For this system, an increase in area results
in an increase in volume (at fixed pressure), because the
new area takes liquid and moves it to the lower-density
interface. There is no competing effect of adsorption of
solute at the interface, because the solute is completely
inert. It would seem that this behavior is described well
through examination of the density and composition
profiles, which are presented in Figure 3 for T ) 1.0. It
is evident from the figure that there is indeed a marked
depletion of solute at the interface. The solvent mole
fraction in the vapor is significantly enhanced in the
vicinity of the interface (as defined by the density
variation). However, we will revisit this issue below and
find that the picture presented by Figure 3 gives an
inadequate representation of the relevant effects.

Figure 2 gives an indication of the slope τ ) (∂γ/∂p)T

according to the Hansen-Turkevich-Mann formula given
above as eq 8. The small lines on each data point indicate
the slope expected from the formula, and they show an
imperfect but still satisfactory agreement with the overall
behavior of the γ versus p curves. The values of τ computed
this way are presented in Table 1. This quantity derives
its value from an imbalance between the number of
molecules in the system versus the number given in terms
of the bulk densities, and consequently, its evaluation
requires precise knowledge of the bulk-phase densities
and the numbers of molecules of each species in the phase.
Of course in a simulation, the molecule numbers are known
exactly and the densities are given rather precisely also.
One might consider in this context how well this calcula-
tion could be completed using experimentally obtained
data. To aid in this evaluation, we have performed a
sensitivity analysis, in which we computed ∂ ln τ/∂ ln x,
where x is any of the quantities appearing in eq 8. This
derivative describes, roughly, what percent change in τ
can be expected from a 1% change (or error) in each
quantity. We find that this derivative is of the order of 20
or so (i.e., τ changes by 20% for a 1% change in the quantity)

(31) Singh, J. K.; Kofke, D. A.; Errington, J. R. J. Chem. Phys. 2003,
119, 3405.

Figure 1. Vapor-liquid coexistence diagram for the εAB ) 0
(hard-sphere) mixture, showing coexisting liquid, x, and vapor,
y, solvent mole fractions for various pressures. The lines describe
data for different temperatures: 1.0 (bottom), 1.05, 1.1, and
1.15 (top).

Figure 2. Surface tension versus saturation pressure for the
εAB ) 0 mixture. Temperatures, kT/εAA, are indicated in the
legend. The short slanted lines through each point have a slope
equal to τ, as given in eq 8.

Table 1. Surface Tension, γ, Its Pressure Derivative, τ,
According to eq 8, and the Gibbs Surface Excess, Γ2

a

εAB ) 0.0 εAB ) 0.5

xA T γ τ Γ2 γ τ Γ2

0.7 1.0 0.36(1) 1.24 -0.10 0.19(1) -1.81 0.13
0.7 1.05 0.29(1) 1.64 -0.14 0.12(1) -1.21 0.087
0.7 1.1 0.22(1) 1.65 -0.14 0.011(7) -0.73 0.033
0.7 1.15 0.16(1) 0.67 -0.059
0.8 1.0 0.33(1) 1.24 -0.073 0.21(2) -1.83 0.092
0.8 1.05 0.25(2) 1.23 -0.073 0.16(1) -2.69 0.13
0.8 1.1 0.20(1) 1.61 -0.098 0.089(9) -1.75 0.086
0.8 1.15 0.13(2) 0.90 -0.055
0.9 1.0 0.30(2) 1.11 -0.034 0.25(1) -2.90 0.073
0.9 1.05 0.24(1) 1.38 -0.044 0.18(1) -1.75 0.046
0.9 1.1 0.18(2) 1.02 -0.032 0.12(1) -2.06 0.051
0.9 1.15 0.11(1) 0.94 -0.031
0.95 1.0 0.30(2) 1.27 -0.020 0.27(1) -3.07 0.040
0.95 1.05 0.22(1) 0.48 -0.0075 0.20(1) -2.44 0.033
0.95 1.1 0.16(2) 0.98 -0.016 0.15(1) -1.97 0.026
0.95 1.15 0.091(13) 0.92 -0.015

a The data are given for different temperatures, T (in units of
εAA/k), and overall (liquid + vapor + interface) solvent mole fraction,
xA. All other quantities are given in units such that σAA and εAA are
unity. The numbers in parentheses indicate the 67% confidence
limits of the last digit(s) of the tabled value.
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for almost all of the independent variables, indicating that
the τ value calculated this way is indeed sensitive to the
quality of these data. The noise in the slopes depicted in
Figure 2 is consistent with this observation.

To examine the effect of solvent (A)-solute (B) interac-
tion on the surface tension, we repeated the calculations
described above for the SW-HS mixture but with an A-B
interaction that is mildly attractive (εAB ) 0.5). The B-B
interaction remains purely repulsive. Figure 4 presents
a portion of the phase diagram for the εAB ) 0.5 system.
Perhaps its most notable feature is that it is not quali-
tatively different from the SW-HS behavior shown in
Figure 1. The mole fraction of solute in the liquid is slightly
more, but overall, the form of the coexistence envelopes
is very similar to that seen in Figure 1.

In light of the great similarities in the phase diagrams
for this and the SW-HS systems, it is interesting to
observe qualitatively different behaviors in the surface
tension versus pressure. Figure 5 presents these data.
The slope has changed sign, and the system now exhibits
the more common behavior of decreasing surface tension
with pressure. The small attraction added to the solute-

solvent interactions is quite sufficient to change the
phenomenology. This outcome explains well why most real
systems (i.e., any not involving a helium solute) exhibit
a negative τ value; it simply does not take much solute-
solvent attraction to cause the surface tension to decrease
with pressure. Slopes according to eq 8 are again indicated
on the figure and agree acceptably with the shape of the
curves. The sensitivities of the slopes to the parameters
of the equation are listed in Table 2. Roughly the same
degree of sensitivity is seen as in the previous example.

Given the qualitative change in the pressure dependence
of γ, one might expect to see a stark change in the
concentration and density profiles. However, we do not,
as shown in Figure 6. There remains a significant layer
of solvent enhancement in the vapor near the interface,
which itself is not surprising given the stronger affinity
of the solvent molecules for the (solvent-dominated) liquid
phase. A more illuminating picture examines the behavior
of the solvent and solute profiles together. These behaviors
can connect to the surface excess, Γ2, which was shown by
eqs 9 and 10 to relate simply to τ for the type of system
presently under study. Figures 7 and 8 are the relevant

Figure 3. Profiles of solvent mole fraction (solid line) and total molar density (dashed line) for various compositions of the εAB
) 0 mixture at T ) 1.0. The overall mole fraction (vapor + liquid + interface) for square-well (A) species is given in the inside box.

Figure 4. Vapor-liquid coexistence diagram for the εAB ) 0.5
mixture. The lines describe data for different temperatures:
1.0 (bottom), 1.05, and 1.1 (top).

Figure 5. Surface tension versus saturation pressure for the
εAB ) 0.5 mixture. Temperatures, kT/εAA, are indicated in the
legend. The short slanted lines through each point have a slope
equal to τ, as given in eq 8.

4222 Langmuir, Vol. 21, No. 9, 2005 Singh and Kofke



plots. These figures show the species density profiles, n1-
(z) and n2(z). At first glance, they too do not seem to differ,
but there is a feature that is consistently different between
them. The figures are scaled such that each profile covers
its full range, and no more, for the range of the ordinate
axes. When presented this way, the point at which the
two profiles cross can give some indication of their relative
rate of change. In Figure 7, presenting results for the
square-well solute, one finds that the curves cross toward

the upper half of the scale. This indicates the solute profile
is changing more rapidly than the solvent profile. A more
rapid rise in solute concentration corresponds to an
enhancement of solute at the interface. In contrast, the
profiles for the hard-sphere solute, shown in Figure 8,
show that the curves cross toward the lower half of the
scale. This means that the solute concentration is rising
slowly compared to the drop in solvent concentration, and
the interface is relatively depleted of solute. These

Figure 6. Profiles of solvent mole fraction (solid line) and total molar density (dashed line) for various compositions of the εAB
) 0.5 mixture at T ) 1.0. The overall mole fraction (vapor + liquid + interface) for the square-well (A) species is given in the inside
box.

Figure 7. Profiles of solvent molar density (solid line) and solute molar density (dashed line) for various compositions of the εAB
) 0.0 mixture at T ) 1.0. The overall composition (vapor + liquid + interface) for the square-well (A) species is given in the inside
box.
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considerations are quantified by the Gibbs surface excess,
Γ2, which does indeed exhibit different signs for the two
cases. Data are given in Table 1.

One might consider quantifying the behavior captured
in Figures 7 and 8 by fitting the profiles to a suitable
functional form. Differences in the rates of change of the
profiles for each component would yield different interface
thicknesses in such fits, and these differences might be
connected to the behavior of τ. The square-gradient model
of Cahn and Hilliard32 leads to a hyperbolic-tangent form
for the density profile

where y is a property that varies across the interface, yj
) (yR + yâ)/2 and ∆y ) (yR - yâ)/2. The parameter ê is a
correlation length that describes the rate of change of y
across the interface. One of the assumptions used in

developing eq 16 is that only a single intensive property
varies across the interface. Thus, it may be appropriate
to use only for single-component vapor-liquid interfaces
(for which y stands for the density) or two-component
liquid-liquid interfaces (for which y stands for the mole
fraction), and such systems. In the present case, both the
density and the composition change across the interface.
Thus, while eq 16 has the appropriate qualitative form to
describe the profiles in Figure 7, in important ways, it
might be expected to be inadequate. Indeed, if eq 16 is
used to describe n1(z) and n2(z) (each with its own ê), eq
8 yields τ ≡ 0. Alternatively, if instead eq 16 is used to
describe both the overall density, F(z), and the mole
fraction, c(z) (again each with its own value of ê), then eq
8 shows that τ is necessarily negative. These restrictions
are not obeyed in all of our results, so a simple application
of eq 16 cannot give a correct quantitative description of
the profiles (at least for τ > 0), so it cannot be used to
interpret Figures 7 and 8.(32) Cahn, J. W.; Hilliard, J. E. J. Chem. Phys. 1958, 28, 258.

Figure 8. Profiles of solvent molar density (solid line) and solute molar density (dashed line) for various compositions of the εAB
) 0.5 mixture at T ) 1.0. The overall composition (vapor + liquid + interface) for the square-well (A) species is given in the inside
box.

Table 2. Surface Tension, γ, Its Pressure Derivative, τ,
and Sensitivity Measures of τ with Respect to na (solvent
number density in liquid), nb (solute number density in

vapor), Na (total number of solvent particles), and Nb
(total number of solute particles)a

εAB γ τ
∂ ln τ/
∂ ln na

∂ ln τ/
∂ ln nb

∂ ln τ/
∂ ln Na

∂ ln τ/
∂ ln Nb

0 0.36(1) 1.2 6.7 26 -7.5 -26
0.5 0.19(1) -1.8 -2.7 -19 3.6 21
1 0.21(1) -5.9 9.2 -8.3 -11 19
1.2 0.30(2) -10 22 -6.5 -24 29
1.4 0.43(2) 5.9 -290 15 300 -310
1.6 0.61(3) 37 130 0.7 -130 130
1.8 0.89(4) -37 -66 0.7 69 -67
2 1.03(3) -11 -190 0.4 200 -190

a The data are for systems with different solvent-solute well-
depth parameters, εAB, at a temperature of kT/εAA ) 1.0 and an
overall solvent mole fraction of xA ) 0.7. All values are given in
units such that σAA and εAA are unity. The numbers in parentheses
indicate the 67% confidence limits of the last digit of the tabled
value.

y(z) ) yj + ∆y tanh(z/ê) (16)

Figure 9. Vapor-liquid coexistence diagram for several
mixtures differing in εAB, as indicated. The lines join a single
pair of coexistence points (each for a system of an overall mole
fraction (vapor + liquid + interface) of 0.7) to a common
coexistence point for the pure-solvent system. All data are for
T ) 1.0.
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We finish this work with a broader, less-detailed
examination of the effect of the solute-solvent interaction,
εAB, on the surface tension and its pressure derivative.
For this part of the study, we look at a single temperature
of T ) 1.0 and an overall solvent mole fraction of 0.7.
Within these constraints, we varied εAB from 1.0 to 2.0 in
steps of 0.2, supplementing the corresponding data already
considered for εAB ) 0 and 0.5. An outline of the p-xy
behavior available from these data is shown in Figure 9.
This figure presents on a single plot a coarse-grained
picture of the dilute vapor-liquid coexistence behavior of
all of the systems. Two coexistence states are given for
each system (one being the pure solvent at x, y ) 1), and
the lines give a rough, imperfect picture of the coexistence
region between these points. The increased solute-solvent
attraction results in a clear enrichment of the liquid phase.
For εAB > 1.2, the liquid composition is practically equal
to the overall composition, and in these cases, each system
is at its bubble point. These systems all exhibit negative
deviations from ideal mixing, and for larger εAB, it is clear
that the mixtures each possess a minimum-pressure

azeotrope. The εAB ) 1.4 and 1.6 systems simulated here
are nearly azeotropic.

The surface tension as a function of εAB is presented in
Figure 10. As A-B attraction is increased from the hard-
sphere limit, surface tension decreases as a result of the
increased presence of solute in the liquid. Beyond a point,
however, further increase in attraction leads to an increase
in surface tension. The liquid composition does not vary
much across this range because it is almost equal to the
overall composition. This increasing surface tension is a
result of the greater cohesion of the liquid with the more
strongly attractive solute.

Density profiles for a few of these systems are presented
in Figure 11. The solute and solvent densities vary
identically across the interface, and except for εAB ) 1.0,
there is no obvious depletion or enhancement of either
species at the interface. Thus, the behavior of τ is hard to
gauge from these pictures. We present values ofτ computed
according to the Hansen-Turkevich-Mann formula, eq
8, in Table 2. There is no clear pattern to the behavior,
perhaps reflecting that the overall composition is not an
especially useful quantity to fix when comparing two
systems this way. However, it is notable that the slopes
remain negative, except for the two cases that Figure 9
identified as near-azeotropic. The sensitivity analysis
shows that τ is very sensitive to some of the properties
used in its calculation, such that just a 1% change in the
input quantity can lead to more than a 100% variation in
τ. However, these input quantities are themselves not
subject to much variation, as at the bubble point they are
closely connected to the overall composition, which is
known exactly. Still, this sensitivity should be kept in
mind when considering these results.

To consider further the behavior of τ near an azeotrope,
we can perform an asymptotic expansion of eq 8; thus,

where δ ) 1 - x1
â/x1

R. Unfortunately, we cannot gather
much insight from this result. It does not give a clear

Figure 10. Surface tension of a square-well fluid in the
presence of solute with varying solute-solvent interaction at
a constant temperature, T ) 1.0. The overall mole fraction (vapor
+ liquid) of square-well molecule is fixed at 0.7.

Figure 11. Profiles of solvent molar density (solid line) and solute molar density (dashed line) for various εAB (indicated by the
value in the box) at T ) 1.0. The overall composition (vapor + liquid + interface) for the square-well (A) species is 0.7.

τ ∼ -Γ2(v
â - vR)δ-1 + O(δ0) (17)
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indication of even the expected sign of τ, and while it
suggests that τ might diverge at the azeotrope, it may be
that Γ2 vanishes there also, which would negate the basis
for the asymptotic form. A similar analysis applied to eq
8 yields

which also does not lead to a general conclusion. It is hard
to gauge the behavior of the first term in parentheses,
which captures the surface effects.

IV. Conclusion
The study of simple molecular models can provide

qualitative insight regarding the molecular origins of
macroscopic behavior. In the present case, we have shown
how features of the surface connect to the way vapor-
liquid surface tension varies with pressure for two-
component mixtures. With the molecular model, we can
approach the ideal of an inert gas pressurizing the system.
In this case, we observe that the pressure derivative is
positive, in agreement with experimental observations
that use helium as a pressurizing gas. The addition of

modest attraction between the gas and the solvent finds
that the pressure derivative takes negative values and
that this behavior persists as the solute-solvent attraction
is increased. The only exceptional behavior in this regard
may be at points of azeotropy, at which we again observe
positive derivatives. However, we are not able to conclude
that this is a general feature of azeotropic systems.

The present study permits us to examine the relation
of the pressure derivative to surface-excess properties.
We find that the connection between the derivative and
the Gibbs surface excess is in place for the limit in which
the solute is insoluble in the solvent. In the more general
case, the general surface thermodynamics of Hansen
provides an appropriate basis for describing the behavior.
We show that the pressure derivative established using
this formalism is in good agreement with the observed
variation of the surface tension with pressure.

Acknowledgment. This work has been supported by
the U.S. National Science Foundation, grants CTS-
0076515 and CTS-0219266. Computational resources have
been provided by the University at Buffalo Center for
Computational Research.

LA0471947

τ ∼ -(N -
N1

x1
R )(vâ - vR)δ-1 + O(δ0) (18)
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